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EXECUTIVE SUMMARY

This is the final report of a two-year (4/01/2001 — 3/31/2003) research project conducted
under the AFOSR sponsored Critical Infrastructure Protection and Information Assurance
Fellowship Program. The research focused on information networks and methods to
understand their vulnerability to information-based attack (as opposed to physical and
other forms of attack). Information based attacks are attacks that can be carried out from
anywhere in the world, while sipping cappuccino at an Internet café or while enjoying the
comfort of a living room armchair. Such attacks are particularly problematic because
they take place in a “virtual cyber world” that lacks the social, economic, legal,.and
physical barriers and protections that control and limit crime in the material world.
Research outcomes range from basic theory through to addressing vulnerabilities in
specific networking technologies.

Basic Theory. Development of the F-matrix, a mathematical framework for studying the
implications and impacts of complexity on engineering design and optimization.

Malicious Mobile Code. Development of a modeling and simulation framework for
studying the cascading spread of malicious code such as the increasingly common
Internet worms and email viruses. '

User Profiling. Designed and evaluated a simple sensor for profiling and detecting
abnormal and suspect user behavior—the first step to arresting cyber criminals.

Wireless Security Protocol. Development of a simple cryptographic protocol rooted in
message authentication and demonstration of its application to securing inherently
vulnerable wireless data links.
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1. INTRODUCTION

This is the final report of a two-year (4/01/2001 — 3/31/2003) research project conducted under
the AFOSR sponsored Critical Infrastructure Protection and Information Assurance Fellowship
Program. The broad goal of the project was to explore the development of a theory for
understanding and assessing the vulnerability of information networks to ‘information attack’ so
as to be able to choose strategies to prevent such attacks and to make our critical information
networks more secure, predictable, and reliable. To this end, our research focused on the

following topic areas:

e Complexity. By almost any measure of complexity (Lloyd, 2001), information networks are
complex. Understanding the sources of complexity and the limitations that these sources
impose on our ability to analyze, optimize, and secure an information network is a necessary
first step towards discovering new ways to deal with complexity and its limitations.

e Cascading Failure: Internet worms and viruses are becoming an increasing cause for
concern. While we have been fortunate in that the Internet worms and viruses have so far
been largely benign, these malicious software programs have the potential to rapidly cascade
through an information network like a disease through an animal population to cause
widespread damage and disruption. Developing models to understand propagation
mechanisms and how they are impacted by network topology, routing architecture, and
response strategy is needed to design techniques to detect and defend against such cascading

phenomena.

e Information Classification. A fundamental difficulty in large, distributed information
networks is establishing the legitimacy of service requests. First, it is generally not possible
to positively determine the identity of the user who submitted the request. The presentation
of credentials such as username and password is no assurance of identity, since these can be
easily guessed or stolen. Moreover, since information networks lack many of the social,
economic, legal, and physical barriers and protections that control and limit crime in the
material world, there is less to restrain people, even “trusted” insiders, from misusing an
information network. Intrusion and misuse detection techniques able to classify user
activities as normal or suspect are necessary to protect a system against illegitimate activities.

e Technology Vulnerabilities. There often seems to be an inverse relationship between the
convenience of a technology and its security. Wireless technologies in particular are very
convenient, but particularly vulnerable to attack. Specific protocols are needed to reduce this
vulnerability. These protocols, however, must be carefully designed and implemented, as
evidenced by the notorious weaknesses of the Wired Equivalent Privacy (WEP) security
protocol used in the current and very widely deployed 802.11b, WiFi wireless networking
devices. Many fixes have, of course, been proposed for WEP, but many of these are quite
elaborate and will require significant changes to the current wireless infrastructure. The
complexity of these proposed solutions, while they look good on paper, can work to the
advantage of an attacker since their implementation is difficult and because their complete




testing is generally not possible. We believe that good security does not necessarily require
complex solutions, but should rather focus on simple security protocols.

We believe that significant progress was made on the above topics. The discoveries and
understandings that arose from this project has lead to the identification of new and promising
research directions that are being pursued by the PI, the Fellow (now a full-time Research
Associate at Harvard University), and researchers at other universities that we collaborated with
during the course of this project. Specific accomplishments include the following:

The development of new theory for understanding fundamental limitations to optimization
and fundamental relationships between complexity and system security (Ho and Pepyne,
2002; Ho, Zhao, and Pepyne, 2003).

Initial develop'ment of a modeling framework for understanding worm and virus attacks
(Pepyne, Gong, and Ho, 2001).

Development and evaluation of new sensor technology for intrusion and misise detection
(Hu, Pepyne, and Gong, 2002). S

Invention of a new protocol for wireless data link layer security (Pepyne, Ho, and Zheng;,
2003). ‘ .

The remainder of this report is organized as follows. Section 2 provides additional details about
the above accomplishments. In Section 3 lists the publications produced during the project.
Section 4 gives a brief biographical sketch for the Fellow funded by the fellowship. Section 5 is
a bibliography of the other references mentioned in this report.




2. BACKGROUND AND SUMMARY OF ACCOM’PLISHMENTS

The following subsections provide a summary of accomplishments, including sufficient
background to motivate and understand their significance.

2.1 Complexity

In (Ho and Pepyne, 2002; Ho, Zhao, and Pepyne, 2003) we developed a framework for
understanding the basic limitations to our ability to optimize and secure complex systems such as
today’s information networks. This framework provides both descriptive understanding and

suggests prescriptive design guidelines.

Starting from basic principles, the goal of much of engineering is optimization. We are gonerally
seeking' an engineering solution that is “best” in some sense, or at least ‘provides an
“improvement” over the current solution. The first step in setting up an optimization problem is
defining the input space of solutions X and output space of performance values Y. Regarding
these two spaces, we can make the following assumption:

e Finite World Assumption. The only general-purpose tool for studying complex systems such
as large information networks is a simulation model run on a digital computer. Becapse the
world of digital computers is a discrete and finite one, we assume that X and Y are discrete

and finite spaces.

The Finite World Assumption leads immediately to a construct we call the “Fundamental
matrix”, or F-matrix for short. The rows of this matrix are the inputs from X (solutions,
strategies, designs), the columns are problem instances (mappings from X to ), and entry ij (an
element of Y) gives the performance of the row i solution on the column j problem instance. If
there are |X] total possible inputs and |¥] total possible outputs, then there are |F1 = |1 total
possible unique problem instances in the set ' = {f. X — ¥}. That is, an F-matrix has |X] rows
and |F]=|Y}" columns, and we immediately note that the number of columns is exponential in the
number of rows. To fix ideas, an example F-matrix for |[X] = 3 and |Y] = {0, 1} is illustrated in
Fig. 1. To simplify the discussion, in Fig. 1 we have partitioned the strategy performance space
into 0 = “bad / unsatisfactory” and 1 = “good / satisfactory”.

[ | AO) | AG) () | fix) | fx) | o) | fe)
x | 1 1 [ 1 |1 ]o]o]o o

X2 1 1 0 0 1 1 0 0
X3 1 0 1 0 1 0 1 0

FiG. 1. EXAMPLE F-MATRIX.

Now let us make another reasonable assumption.

e Uncertain World Assumption. With complex real-world systems there are invariably certain
things that we cannot measure or control, e.g., the idiosyncrasies of human behavior. These
are generally captured using probability distributions, which leads to a stochastic model and
stochastic optimization criteria, e.g., the average delay between submitting a request and

getting a reply.




The Uncertain World Assumption is captured by defining a distribution over the columns of the
F-matrix. That is, some problem instances (columns) are more likely than others. Conceptually
then the usual goal of stochastic optimization is to find a solution xe X (row of the F-matrix) that
gives only “good” performances for the most likely problem instances (columns of F). In other
words, stochastic optimization can be viewed as requiring the minimization of a weighted sum of
the columns of an F matrix, where the weightings are the probabilities associated with the
various problem instances (columns of F).

Stochastic optimization problems of any degree of sophistication will usually require that we
employ some sort“of iterative search procedure to'find such a solution. We can make the
following reasonable ‘assumption regarding the computational resources available to such a

search procedure.

e Intractability Assumption. Practical constraints on computing capabilities and the time we
can allocate to solving aproblem limits us to procedures whose computational burden scales
as a polynomial function of the size of the input, as measured by the total number of possible

- solutions |X]. If the computational effort scales faster than polynomial in |X], then the time
required for the procedure to complete will quickly exceed any reasonable computing and
time budget. -

The Intractability Assumption is related to the computational complexity notion that a tractable
algorithm is one whose running time scales as a polynomial function of the input size (cf. Du and
Ko, 2000). In computational complexity, the input size is usually measured by the number of
bits needed to represent"an input x € X. Since |X] is generally exponential in the number of bits
for each input x (e.g., n-bits for each x implies |X] = 2™), the Intractability Assumption is'actually
a relaxation of the usual computational complexity notion of intractability. In particular, under
the Intractability Assumption, any deterministic problem instance f € F is assumed solvable
since the effort to do so scales linearly in |X]. When translated to the stochastic case, which we
have captured by defining a distribution over a family of deterministic problem instances, the
Intractability Assumption implies that we can only optimize with respect to a number of
deterministic problem instances (columns of the F-matrix) that scales polynomially in |X].

Measuring Complexity. Given the Intractability Assumption, the total number of inputs |X] is the
most natural way to measure the complexity of a stochastic optimization problem. The larger |X]
the more complex the problem in the sense that it will generally be more difficult to obtain a
satisfactory solution, i.e., one that gives good performance for all of the most likely problem
instances. Moreover, |X] is an optimistic lower-bound measure of complexity in that is assumes
there exists polynomial time solution procedures for every deterministic problem instance
(column), including the worst-case hardest instance.

The F-matrix described above gives a framework for asking general questions about
optimization, complexity, and security. In particular the F-matrix can be used to explain
fundamental limits to our ability to optimize and secure complex systems, and to identify
guidelines for overcoming these limits. An appealing feature of the F-matrix is that the
explanations it provides are simple and accessible. In fact, the essential concepts can be
understood using little more than the simple example in Fig. 1 (for a rigourous development of
the results see Ho, Zhao, and Pepyne, 2003; Ho and Pepyne, 2002).

Result #1: The No Free Lunch Theorem (NFLT). The NFLT [first proved for optimization in
(Wolpert and Macready, 1997)] is a fundamental result in optimization, describing as it does an
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inverse relationship between the efficiency (speed with which it finds good solutions) of an.

optimization strategy and its generality (range of problems to which it can be applied). The F-
matrix—even the extremely simple one in Fig. 1—makes this fundamental result clear. First,
note that each row has an equal number of 0’s and an equal number of 1’s (this is a general
property of F-matrices that holds for any |1)). This implies that all row averages are equal. In
other words, there is no general-purpose optimization strategy that is universally better than all
others on all possible problem instances, since when averaged over all possible problem
instances all strategies give equal average performance—this, in a nutshell, is the NFLT.

Result #2: Overcoming the NFLT. Not only does the F-matrix make the No Free Lunch
Theorem (NFLT) clear, but it also makes it clear what we need to do to overcome it. Referring
again to Fig. 1, it is clear that over subsets of the columns of the F-matrix, the row averages are
generally not equal. In other words, for specific problems (defined by a distribution over some
subset of the columns of F), the efficiency of different optimization techniques (each row of F is
a different technique) is generally not equal. The goal of the decision sciences is identifying
specific properties of problems and discovering optimization strategies able to exploit those
specific properties, e.g., gradient methods for convex problems and the Ricatti solution to Linear
Quadratic Gaussian problems.

Result #3: Simple Strategies. With outcome 0 as “unsatisfactory” efficiency and 1 as
“satisfactory” efficiency, a less obvious result of the NFLT that becomes apparent when viewed
through the F-matrix, is that any optimization strategy—no matter how simple—is good for % of
all possible problem instances. This follows immediately from the fact that in every row % of
the outcomes are 1’s (i.e., satisfactory). Empirically, there are many simple “rules of thumb”
that work well over a variety of complicated situations (e.g., tit-for-tat in the prisoner’s
dilemma). An interesting research direction would be to develop a means for systematically
discovering simple rules of thumb and the classes of problems that they are good for (this is -
related to Wolfram’s (2002) “new kind of science”, which is based on the observation that
simple programs are capable of universal computation, and that hence nothing more than simple
programs are needed to understand the apparent complexity of nature).

Result #4: Robust yet Fragile. According to the Intractability Assumption, we can only
optimize over a number of problem instances, |P], that scales as a polynomial function of |X]. We
call these |P| problem instances the “planned for” problem instances. The remaining |F] - |P|
problem instances we call the “unplanned for” problem instances. We observe that the number
of problem instances that we cannot plan for grows exponentially in |X] (according to |[F] — |P| =
1™ - |P| = |Y¥ for large |X]). This observation leads to a fundamental limitation in complex
systems—the unavoidable tradeoff between robustness and fragility (see also Carlson and Doyle,
2000). In particular, when we “solve” a stochastic optimization problem we do so by choosinga
solution that “concentrates” good outcomes under the |P| planned for columns. Then, simply
because there is an equal number of good and bad outcomes in each row, the unplanned for
columns will necessarily have a higher fraction of bad outcomes. Hence a solution that is
“robust” in that it gives good outcome for all of the |P| planned for columns, is “fragile” in that it
is more likely than not to give bad outcome when an unplanned for situation is encountered.
Moreover, this fragility becomes more apparent as the complexity of the problem |X] increases,
since as |X] grows, the fraction of problem instances that we can plan for decreases at an
exponential rate, i.e., |[P| / (|F] — |P]) = 1/]71*. In social, legal, and political systems, which are

5




among some of the most complex human “engineered” systems, this observation-is the oft-heard
“law of unintended consequences” (Merton, 1936).

Result #5: Challenge of Seclurity. One common way to view security is as a matrix game in
which a defender (security administrator) chooses a defense strategy (a row from the F-matrix),
an adversary chooses an attack scenario (column from the F-matrix), and the payoff is the
corresponding F-matrix entry (0 = bad outcome for the defender, 1 = good outcome for the
defender). However, because every row contains an equal number of 0’s and 1’s, it is clear that
no security strategy can protect against every possible attack. And similar to the robust yet’
fragile tradeoff, the ' likelihood that our system will have a security vulnerability increases
exponentially with |X], the system complexity. R

The moral lessons that we can take away from the above is that we face certain unavoidable
limitations in our problem solving capabilities—there is no Holy Grail solution procedure and
sometimes obtaining the optimal solution that gives good outcome for every likely problem
instance is simply beyond our capabilities. This does not mean, however, that we should give
up. There are some design guidelines that we can follow. The first and most obvious solution is
to try to reduce problem complexity |X]. The most obvious way to do this is by removing certain
features and capabilities, e.g., prevent remote login or wireless access to a sensitive information
network. Another way to reduce complexity is by imposing more structure on a problem. Ina
network this might be done, for example, by replacing a “flat” interconnection topology, where
there are many paths between the network nodes, with a hierarchical one where paths are clearly
defined and more easily.monitored and controlled; or we might host our Web pages on a special
server that is isolated from the rest of our internal organizational network. Reducing features and
building in structure effectively reduces the number of columns in the F-matrix, i.e., starting with
the original problem we end up making certain problem instances (columns) infeasible. Another
way to eliminate columns of the F-matrix is to make them computationally intractable. For
example we might require that all communications be encrypted to complicate passive
eavesdropping. Imposing structure and reducing features may reduce system performance, but
this might be more than compensated by a reduction in security vulnerabilities and other
unintended consequences. Finally, we can deal with complexity by relaxing our optimization
goal, i.e., rather than asking for the true (generally unattainable) optimal, we might instead ask
for solutions that are “good enough with high probability” or simply “improving”. Good enough
with high probability greatly expands the number of solutions that will satisfy our objectives
[goal relaxation is the essence of the ordinal optimization approach (Ho, 1999)]. The idea of
seeking improving solutions is that while the optimal may be computationally out of reach,
comparing solutions and picking the better one is computationally easier [order is easier to
determine than value, (Ho, 1999)], and when pursued over a period of time can give steady
gains, even as objectives and the environment change over time. The Internet for example
continues to grow in size and importance at the same time that its use continues to evolve with
‘each new technological innovation. ’

Possible vs. Probable. As suggested above, a major question in dealing with complexity theory
is not so much what is possible but rather what is probable. As the complexity of a system
increases, what is possible quickly exceeds our abilities to contemplate (what is possible grows
exponentially in |X]). However, there is currently no theory—not F-matrix theory or any other
theory—that can reliably tell us what is probable (i.e., what columns are most likely in specific
settings). Empirical studies of complex networked systems show us that certain features such as




small world and scale free interaction topologies appear again and again (Watts, 2003; Barabasi, .
2002). Thus, it seems that there may be some underlying rules at work that “prune” the space of
the possible to a much smaller space of the probable (see also Morowitz, 2002). The probable

vs. the possible remains an open research question.

2.2 Cascading Failure

In (Pepyne, Gong, and Ho, 2001) we developed a modeling framework for studying how
malicious software such as Internet worms and email viruses spread. The framework is derived
from the mathematical machinery of stochastic branching models and percolation models from
statistical physics. The intent of the modeling framework is vulnerability analysis—to
understand the factors that determine how Internet worms and email viruses spread so that
methods for early detection and mitigation might be developed. .

In our model we represent the physical Internet as a graph with “edge” nodes for the servers,
workstations, and local area networks, and “internal” nodes for the routers, and gateways. The
links connecting the nodes represent the physical communication links, e.g., wires, optical fibers,
and wireless channels.

On top of the physical Internet infrastructure are a number of “logical overlay” networks. One
such logical network is defined by the TCP/IP protocol suite. In this logical network each’node
is an IP address. The way TCP/IP works, it makes it appear as if every IP address has a direct
connection to every other IP address. That is, the logical network defined by the TCP/IP
protocols is a complete graph like the one shown in Fig. 2; the actual convoluted path that the
messages follow through the physical network is hidden by the protocols.

FIG. 2. LOGICAL INTERCONNECTION TOPOLOGY BETWEEN IP ADDRESSES.

Services such as email, chat, instant messaging, and the way Web pages are linked together
define other logical networks overlaid on top of the physical Internet infrastructure. The
interconnection topologies of these logical networks is defined by email address books, chat and
instant messaging buddy lists, and Web page hyperlinks. These networks are “social” networks
formed between friends, work mates, business associates, and related Web pages. Recent
research into such networks shows that they have special topological characteristics termed
“small world” and “scale free”! (Watts, 2003; Barabasi, 2002). What is special about these

! The graph is called scale free because the distribution of the number of edges connected to each node follows a
power law distribution. Power law distributions have no natural scale; their distributions give a straight line on a
log-log plot. The “tail” of a distribution with natural scale, in contrast, will sharply drop off on a log-log plot.
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topologies is that even though they are sparse’ the average number of hops between any pair of
arbitrarily selected nodes is surprisingly low.? In particular, of the billions of Web pages it is
estimated that there are an average of only 19 clicks between any two arbitrarily selected Web
pages, and of the 6 billion humans on the planet there is said to be only “six degrees of
separation” between any arbitrarily selected pair (Watts, 2003; Barabasi, 2002). Both of these
network topologies can be viewed as hierarchical—small' world networks as a hierarchy of
“c]usters” interconnected by a few “shortcut” links, and scale free networks as a hierarchy of
highly connected “hubs” each surrounded by a large constellation of lightly connected nodes.
Fig. 3 schematically illustrates these two topologies.

shortcut

7

Y clusters -

(a) Small World - o (b) Scale Free
FIG. 3. SMALL WORLD AND SCALE FREE NETWORKS.

Our spreading model begins with a graph of the appropriate topology—a complete graph for
Internet worms which spread from IP address to IP address, and a small world or scale free graph
for email, chat, instant messaging, or malicious Web page scripts. At each node of the graph is a-
finite state machine (FSM). As the malicious program spreads along the network’s edges it
changes the states of the FSMs from a not infected (normal) state through to an infected
(compromised) state. FSM state transitions depend both on internal parameters (email viruses
for example generally need a human user to activate the virus) and the states of its neighbors
(malicious programs spreads by hopping from neighbor to neighbor).

Internet worms

An Internet worm, such as the CodeRed and NIMDA worms of 2001 and the Slammer worm of
2003, connects to a web server and automatically replicates itself. Worms are fully automated
mobile programs that require no human intervention to spread. The basic spreading mechanism
for a worm consists of the following three steps: (1) the worm randomly scans IP addresses
looking for servers to infect; (2) when the worm finds another server it “probes™ it to see if it is
vulnerable; and (3) if the probed server is vulnerable, the worm installs and runs a copy of itself

2 With N the number of nodes in the graph, sparse means that the number of links in the graph is only a small
fraction of the N(N—1)/2 total number of possible links that the graph would have if it were completely connected.
* The number of hops averaged over all pairs of nodes is called the graph’s diameter.




there. In this way, the number of worms scanning and trying to infect vulnerable servers .
multiples. The basic spreading model for a worm is shown in Fig. 4. As illustrated in the figure,
to a worm the Internet looks like a complete graph, where each node of the graph is an IP '
address. In its simplest form, each IP address has two states: uninfected (state 0) and infected
(state 1). State transition between the uninfected and infected states is given by gi(k), which is
the probability that node i will become infected at step ; once a node becomes infected it stays
infected in this simple model (for more detailed models, see Zou, Gong, and Towsley, 2002).
The probability gi(k) depends on whether or not node 7 is scanned at time k and whether or not
node i is vulnerable. Assuming random scanning, the usual method, the probability node i is
scanned is independent of whether or not it is vulnerable, and depends only on the total
population of infected nodes at time k. With random scanning, the Probability node i is
vulnerable is equivalent to the fraction of IP addresses (there are 232 in IPv4) that are vulnerable.
Once infected the worm continuously scans for new victims.

FIG. 4. BASIC SPREADING MODEL FOR INTERNET WORMS.

Email viruses

The most famous email virus is probably the Love Bug virus, which made its way around the
world in 1999. The typical email virus is an email message containing a virus program as an’
attachment. Unlike an Internet worm, which is fully automatic, email viruses require human
assistance; a human must often “open” the attachment in order to activate the virus. The basic
spreading mechanism for an email virus consists of the following steps: (1) an email message
with a virus attachment is sent; (2) the recipient reads the email message and opens the
attachment; (3) opening the attachment runs the virus; (4) if the recipients email client program
(e.g., Eudora, Outlook) is vulnerable to the virus, the virus infects it; (5) the first thing the virus
does is attempt to spread by emailing a copy of itself to every name found in the email program’s
address book and / or inbox; (6) the virus then goes to “sleep” (becomes dormant) or its
malicious part is activated to do its damage.

The basic spreading model for an email virus is shown in Fig. 5. To an email virus, the Internet
Jooks like a small world or scale free topology, where each node is an email address that it
knows (e.g., one in its inbox or in its address book). The simplest form for an email virus has
three states, an uninfected state (state 0) an infected and broadcasting state (state 1) and a
dormant or malicious state (state 2). A state transition between the 0 state and the 1 state occurs
with probability g,(k), which is the probability that the email client is vulnerable, has received an




email virus, and the virus has been “opened” by the human user. While in state 1 the virus sends
a copy of itself to all of its neighbors. The virus then immediately transitions to state 2 where it
either becomes dormant or runs its malicious payload (e.g.; crashes the computer, steals files,
installs a Trojan, etc.). A more detailed study of email viruses can be found in (Zou, Towsley,
and Gong, 2002). : -

FIG. 5. BASIC SPREADING MODEL FOR EMAIL VIRUSES.

As described above, there are three basic differences between worms and email viruses. First,
worms are fully automatic, while email viruses typically require human assistance. Second,
worms continue to seek out victims one at a time until the infected server is shut down, while
email viruses do it with a single mass mailing. Third, worms spread over a complete graph,
while email viruses spread over a small world or scale free graph topology.

Spreading dynanéics

Despite the differences in their spreading mechanisms, the general dynamics for worms and
email viruses is the same—the S-shaped logistic growth curve shown in Fig. 6. Starting from a
small pool of infected nodes, the number of infected nodes suddenly takes off at an exponential
rate, tailing off after some fraction of the nodes have been infected. In the case of worms, 100%
of the vulnerable nodes will become infected, and this is true for any infection probability g;
(smaller g;, of course, result in a slower spreading rate). For email viruses, the fraction of nodes
infected by the time the virus stops spreading depends both on g; and on where the infection
begins. If the virus can reach a few of the hubs (people with a huge number of email contacts),
then the chance of the infection reaching “epidemic” stage or crossing “percolation” threshold is
increased. These hubs in the scale free graph are its “Achilles heal” when it comes to the graphs’
fault tolerance and security (see also Albert, Jeong, and Barabasi, 2000; Barabasi, 2002).

Empirically the Code Red worm in 2001 saturated the population of vulnerable servers in less
than 24 hours, the 2003 Slammer worm in 10s of minutes. It is said that the Love Bug email
virus traveled around the world in about 6 hours. Clearly, worms and email viruses spread much
to fast for manual intervention to be of much help. Moreover, there is often no way to tell if a
connection request at a server is a worm or an attachment is an email virus until the request is
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allowed or the attachment opened. And even then the server may not be able to detect that it is
infected; similarly a human opening an attachment may not notice anything unusual either.

Given that worms and viruses can spread much faster than can be controlled by manual
intervention, the idea then is to try to develop an early warning system that can detect worm or
email virus activity before the spread reaches the “knee” of the exponential growth phase. At
this point servers and email clients generating suspicious traffic could be “quarantined” and
traffic through certain critical points in the network could be “filtered” out and held as “guilty
until proven innocent.” For some work in this direction for worm mitigation see (Zou, et. al,
2003). In that work, exponential growth is used as the “signature” of widespread worm attack.

A

number infected

—_
»

time
FIG. 6. BASIC SPREADING DYNAMICS FOR WORMS AND VIRUSES.

2.3 Information Classification

Organizations today make virtually all of their information assets available via their
organizational networks. If these networks are accessible from the Internet, then these
information assets are exposed to being attacked by outsiders. Outsiders typically break into a
network by masquerading as an authorized user whose credentials (e.g., username and password)
they have either guessed or stolen. This is not hard to do as usernames are not considered secret
and passwords are notoriously weak; they can be relatively easily obtained using password
cracking software, sniffed off insecure wireless links, stolen with Trojan horses that monitor
keystrokes, or sometimes obtained with a phone call and a little social engineering. But quite
possibly worse than outsiders gaining access, however, is the damage that malicious insiders can
do. Unlike the typical outsider, insiders generally know a great deal about organization and the
organization’s network, including what assets there are and how to find or disrupt them.

Detecting break-ins by outsiders is the goal of an intrusion detection system (IDS). Detecting
malicious insiders is the goal of a misuse detection system (MDS). The “sensors” used by these
systems are classified as signature detectors that look for known patterns of intrusion or misuse,
and anomaly detectors that look for deviations from historical patterns of behavior. Any
comprehensive detection system needs both types of detectors. Signature detectors are typically
fast but not good at detecting new kinds of attacks, while anomaly detectors are generally slower
but can detect new kinds attacks. :
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The basic premise of intrusion and misuse detection is that the “behavior” associated with
normal, benign activities can be distinguished from that of masquerading outsiders and malicious
insiders. On computers, behavior might be how a person interacts with a keyboard or mouse,
which computer a person uses, what application programs they are using, etc. But regardless of
what behavior is monitored, intrusion and misuse detection is at it heart a problem in feature
selection—what features will best allow us to detect intrusions and computer misuse? Since
ultimately all behaviors on computers generate operating system calls, a majority of intrusion
and misuse detection systems focus on operating system calls and system call sequences. Taking
a different approach, in' (Hu, Pepyne, and Gong, 2002) we examined the potential detection -
capabilities of simple temporal features, i.e., instead of attempting to classify users by the content
of their “conversations” with a computer (e.g., by system call analysis), our objective was to
attempt to classify them by the timing and rhythms of the conversations (i.e., by temporal
analysis). co ‘

People exhibit temporal regularities at all levels, from the sleep / wake cycle, brain waves, heart
beat, muscle tone, to how we walk, write, and type on a keyboard. Law enforcement is already
well aware of these temporal regularities and routinely use them to detect deception when
conducting interrogation, polygraph tests, and for profiling (certain activities OK during the day,
are quite suspicious at night). Our purpose was to see if similar ideas could profile users to (1)
distinguish between different people, and (2) detect changes in the peoples’ behaviors. '

We used 6 features: (1) interval —time elapsed since last log on, (2) length — duration of session,
(3) output — total number of commands issued during the session, (4) density — mean command
rate, (5) timing.day — the day of the week the session started, and (6) timing.hour — the hour of
the day the session started. Each time a user logged on and off the computer, one such 6-
dimensional data point was generated. Results from a population of graduate engineering
students (at the University of Massachusetts, Amherst) showed that even with only these 6
simple features clear differences could be detected between different users; differences clear

even to the naked eye.

Intrusion and misuse detection is a classification problem—either the observed behavior is not
anomalous (null hypothesis) or it is (alternate hypothesis). Using the 6 temporal features
described above, we used the method of logistic regression to build a classifier system. Logistic
regression, which can be viewed as a statistically rigorous way to train a neural network
classifier, is a technique that has not been widely used for intrusion and misuse detection. While
we admit that our results were not outstanding, they did provide us with a clear proof of concept
that simple temporal features such as the most basic ones that we selected can be effectively used
to distinguish between different users and to detect changes in a user’s behavior over time.

In a society concerned about privacy, a major advantage of our approach over others is that it is
minimally invasive, and privacy preserving, requiring only simple time stamping and counting.
Our approach does not collect detailed command histories during its analysis or build an audit
file of commands issued (itself subject to attack). Its limitation, like all methods for anomaly
detection is that it is not generally capable of real-time detection. However, our results did
clearly establish a clear role for temporal features as a component part of any comprehensive
defense in depth computer network security solution.
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2.4 Technology Vulnerabilities

Increasingly, wired networks are being expanded and enhanced by adding wireless access for the
cost savings and for the flexibility and convenience that mobility offers. Whereas wired data
links physically provide a well-defined and protected data link between devices, the problem
with wireless links is that wireless signals are broadcast over a wide area, which makes wireless
data links inherently insecure. To attack a wired data link generally requires physical access to
the wire. Attacking a wireless data link, in contrast, can be done from an organization’s parking
lot by anyone with a laptop and a wireless networking card.

Making wireless data links as secure as wired ones means first that all messages traveling over
wireless data links must be authenticated, and second it means that all messages must be
encrypted. Technically speaking this is not a particularly challenging problem, and there are
well-developed cryptographic primitives capable of providing a solution. However, any
cryptographic solution is only as secure as its implementation, and when improperly
implemented even the most theoretically secure scheme can be easily compromised. The
original Wired Equivalent Privacy (WEP) security protocol used in the IEEE 802.11b wireless
communication standard is a perfect case in point (Karygiannis and Owens, 2002; Petroni and
Arbaugh, 2003). Wireless data links “secured” with WEP can be compromised in under 30
minutes using virtually any standard laptop computer and “cracking” tools such as “AirSnort”,
which is easily found on-line. Since 802.11b is still the dominant standard (in the U.S. at least)
and is very widely deployed, its insecurity leaves a huge number of personal, academic, ’
government, and businesses computers and computer networks virtually wide open to attack.

The main problem with WEP is that the secret keys used for message encryption are rarely (often
never) changed. This combined with the use of a stream cipher makes it almost trivial to build a
dictionary of key sequences. For all practical purposes, this is equivalent to determining the
secret key, since given such a dictionary all communications are compromised. In (Pepyne, Ho, -
and Zheng, 2003) we developed a simple replacement for WEP that we call SPRiNG, short for
Synchronized Pseudo-Random Number Generation security protocol. SPRING corrects WEP’s
problem by using a different encryption key for each and every message sent. Specifically, both
parties in a unicast session, e.g., a laptop and a network access point (a.k.a. a wireless base
station), have identical pseudo-random number generators (PRNG). These PRNGs are
synchronized at the start of the communication session by giving each party a common random
seed. With this seed, both parties can individually generate the exact same sequence of pseudo
random numbers (PRNs), {R), Rz, ...}. Without knowledge of the seed, which is a secret shared
only by the two communicating parties, no one else can correctly generate this sequence. Then
as the two parties communicate, they encrypt the kth message exchanged between them with the
kth PRN, R, in the PRNG sequence. Since both parties must keep count of the number of
messages sent, k, and since frame loss in wireless is not infrequent, we employed a simple K-
look ahead window to keep them synchronized (with K determined by the expected frame loss
probability). This simple scheme just described provides message authentication (because the
PRN sequence is almost random and hard to guess), replay protection (because the PRN
sequence almost never repeats), and confidentiality (via encryption with a different encryption
key applied to each message).
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SPRiNG’s security largely depends on keeping the PRNG seed secret from attackers. An
attacker who can determine the seed can reproduce the PRN sequence, and would consequently
be able to decrypt confidential messages and insert properly encrypted forged messages at will.
In general, “inverting” a PRNG to determine its seed is not entirely trivial even when the raw
PRNG sequence, {R), Ry,...}, can be directly observed. But to make is almost impossible, the
SPRiNG protocol never reveals the raw PRN sequence to wquld be attackers. A SPRING
message contains only the sender’s value for the message count, k, and the message itself
encrypted with Ry. To get the PRNG seed, therefore, an attacker would first have to “invert” the
stream cipher to get the Re’s. Then the attacker would have to invert the PRNG to get the seed.
We moreover propose that the secret seed should be a different random number separately
renegotiated at the beginning of each communication session and whenever a mobile wireless
device roams from the coverage area of one access point to the coverage area of another (i.e.,
during access point handoff)., Session seed negotiation could be effected, for example, using a
“master” secret key for each registered wireless device along with one of any number of existing
key negotiation protocols. (We are also exploring a version of SPRiNG that would perform key
updating using a covert channel effected by “skipping” and “permuting” elements of the PRN
sequence in a way that the intended recipient can detect but an attacker cannot. We omit that
discussion here as its security analysis was not complete at the time this report was written.)

Since our intention was to use SPRiNG as a replacement for WEP, we designed an
implementation that is the same as WEP in every way (so we could use WEP’s encryption and
integrity checking mechanisms, which are done in hardware) except for the following
differences. The addition of a PRNG genetator (a computationally simple linear congruential
generator (LCG) will suffice), a simple look ahead window mechanism to keep the sender and
receiver synchronized, and a table in the wireless access points for storing the count k and
session seed for each active wireless session. While others are calling for extensive and
complicated changes, we argue that with only these few simple changes wireless security could

be dramatically improved.

In closing, we remark that although we developed SPRING to deal with the current and pressing
need for improved wireless security, the SPRiNG protocol is really a generic protocol that can be
used anywhere that secure point to point communication is required. Potential applications
include, for example, secure communication between a computer and peripherals such as
keyboards, printers, external storage devices; secure communication between routers as part of a
“hardened” routing infrastructure; and even to secure communications between applications and

processes.
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